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LETTER TO THE EDITOR 

Exact solution of the A:*) lattice models 

H J de Vega and E Lopes 
Laboratoire de Physique ThCorique et Hautes Energies”, Tour 16, ler  ttage, UniversitC 
Paris VI, 4 Place Jussieu, 75252 Paris Cedex 05, France 

Received 14 May 1990 

Abstract. The exact solution of the A:’’ integrable lattice models is presented. The free 
energy and excitation energies of the vertex models are found as functions of the spectral 
and anisotropy parameters as well as the finite-size corrections yielding the central charges 
and conformal dimensions. 

These lattice models yield a new massive QFT where the mass spectrum and the 
S-matrix are obtained through the light-cone approach. 

The ground state and excitation energies of a new anisotropic spin-one integrable 
chain associated to the A:‘’ model are computed. 

The exact resolution of 2~ integrable statistical models has made impressive progress 
in recent years [l]. The interest in such systems has been further enhanced by the 
discovery that their scaling behaviours (massless and massive) are universal. 

In this letter we present the exact Bethe ansatz solution of the A:*’ vertex models 
( n  2 2). These are two-dimensional vertex models on a square lattice where each bond 
can be in ( n + l )  different states ( n + l  colours) [2,3]. 

We compute the free energy and the excitation energies in closed form. Both scaling 
limits (massive and massless) are explicitly calculated. Using the light-cone approach 
[4], we find a relativistic QFT as a scaling limit of the A‘,Z’ vertex models. We explicitly 
derive the mass spectrum and S-matrix for these new field theories. 

Finally we study the massless continuous limit of the Ak2) vertex models using the 
methods of [ 5 , 6 , 7 ] .  We find that the underlying conformal field theory is like an 
n-component Coulomb gas (central charge = n/2 for even n and c = ( n  + 1)/2 for odd 
n, n > 3 )  where the conformal dimensions are given by (28). 

The A:’) vertex models are trigonometric or hyperbolic solutions of the Yang-Baxter 
equation depending on two non-trivial parameters: 6 (spectral parameter) and y 
(anistropy or deformation parameter) [2]. The Boltzmann weights can be found in [2] 
where q = eiy, x = ezie and 6 = - e i ~ ( f l + l )  for the trigonometric regime. The weights are 
manifestly real for all n in the hyperbolic regime and for AY’ in the trigonometric 
domains. The Bethe ansatz equations can be written for n = 2 (AI2’) as: 

t Laboratoire associC au CNRS UA 280. 
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L906 Letter to the Editor 

The BAE follows for any n from the zero-residue condition applied to the transfer 
matrix eigenvalues proposed in [3]. We find 

cosh(Af"+ iy/2) ( n + E ) / 2 - 1  

cosh(Av' - iy/2) ) + z2 

w h e r e l s k s m l ,  l s l s n , & = O i f n i s e v e n a n d e = - l i f n i s o d d . H e r e n s 3 .  

ml, 1 s Is n} of the BAE ( l ) ,  (2) as: 
The eigenvalues of the transfer matrix expressed in terms of the roots {AY' ,  1 s k s 

A( 8, A ( 1 )  ) - - { sin( 0 - y ) cos [ 0 - (y - E )  y ] } N A  ( e) 

+ { sin 8 cos [ 0 - (T - E )  y ] } "fl B, ( 0 )  

+{sin 8cos[ f ? - ( ~ ) y ] } N C ( B )  

i = l  

where 

(3) 

m1 sinh(Aj1'+i8+iy/2) n -1  E 1 s I s - + -  
2 2  j = ]  sinh(A~"+iO -iy/2) AiO)= n 

nti ,mi+i  sinh[h:"+ ie - i((I/2) + 1) y] sinh[A~'"'+ io  - ( I  - l )y/2]  
B' (e )=  sinh[A,'"+iB--iIy/2] sinh[A(l'+')+i8-i(l+l)y/2] 

m (  n- 1 ) /2,min+ 1 ) / 2  x sinh 2[Aj ."+' ' /2+iB - i (n  -3)y/4] 

x sinh 2 [ h ~ " f " / 2 +  16 - i( n + l )y/4]  

B("+l , /2(~)  = n sinh[Ajn-1"2+iO-i(n - l )y/4]  E=-1 
j = 1  

cosh(A:"+ i0 + i( n + 1 - ~ ) y / 2 )  
cosh(Aj"+if9 +iny/2) 

m=Bn+e-i((T)y+i-u) n + l  irr 
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Equations (1) hold for the A',Z' models in the fundamental representation and they 
have been written in the trigonometric regime. That is, when the vertex weights are 
trigonometric functions of 0 and y. An analogous set of equations hold in the hyperbolic 
regime with trigonometric functions instead of hyperbolic functions in ( 1). 

In the N = CO limit the roots AY'  are disposed as a continuous distribution for the 
antiferromagnetic ground state. By standard methods [ 11 equations (1) become a set 
of linear integral equations for the densities of roots 

We find for the ground state 

sinh(A +{a)  cosh(A - i a )  
sinh(A -ia) cosh(A +ia) '  $(A, a )  = i log &(A, a )  = i log 

In the presence of a hole, say at A = Oh in the level l', the densities of real roots 
become: 

( 6 )  
1 
N 

p ( ' ) ( ~ )  = ~ \ ' ) ( A ) + - [ - G ( A  - e n ) 6 r r r + ~ ~ 1 8 ( ~ ) ]  

where a , ( A )  stands for the density in the ground state (vacuum) and a l r . ( A )  fulfils the 
system of equations 0 s y s ~ / 2 .  

( n - E ) / 2  +cc 

a,,,(+ c J d P  k , ~  -ojrw = M A  - o n ) .  ( 7 )  
j = l  -a 

We will not consider here the possibility of complex roots and we will limit ourselves 
to the interval. 

Solving equations (3) and (7)  by Fourier transform we find: 

c 0 s h ( k / 4 ) [ ( n + 1 - - 2 0 ( 7 7 - ~ ) + ~ 7 r I  l s l s -  n + e  
6:"( k )  = 

~ 0 ~ h ( k / 4 ) [ ( n +  l ) ( ~ -  Y ) + E T ]  2 
(8) 1 

E = -1. 6.1" + 1 ) /2  

( k ) = 2  cosh(k/4)[(n - l ) ( ~ -  y )  - T ]  

That is, 

l ( r - 7 )  cosh A T  sin 
4 = 

( n  + 1)( T - y )  + E T  [(n + l ) ( T  - y )  + E T ]  2 [ ( n  + 1)(T - y )  + E771 

Notice that ml = N (1 s 1 S n) in the ground state. 



L908 Letter to the Editor 

The hole contribution to the roots density o l l ( A )  (see (6)) turns out to be 

sinh k r / 2  
sinh k y / 2  

& I / , (  k )  = 611, - 

(10) 
n + &  

2 

where x = k (  7r - y ) / 2 .  

per site is 

fn(8, y)=jomdosinh2w8 w 

More generally, the excited eigenvalues have the following form for N + w  

We find the transfer matrix eigenvalues using densities (8) and ( 1 0 ) .  The free energy 

( 1 1 )  
cosh[((n - l ) ( ~ -  y ) / 2 + ~ 7 r / 2 ) ~ ]  sinh yw 

cosh[(( n + l ) (v  - y ) / 2 +  E T / ~ ) w ]  sinh TW ’ 

where gl.( 8, O h ,  y )  denotes the contribution of a hole at Oh in the level l’, which proves 
to be: 

gl( 8, eh, y )  = 2 tan-’ 

( 1 3 )  
)-‘I* )(sin [ ( n +  l ) ( . r r+  y ) +  E n - ]  2 [ ( n  +- I ) ( T  - y ) +  E T ]  

(Oh+i8)7r l(.rr - Y) sinh [i 
We see from (13 )  that these models are gapless since gl(8, -CO, y )  = 0. Therefore, 

one can construct a massive field theory from them using the light-cone approach 
[ I ,  41. In this framework the energy and momentum eigenvalues are given by 

where a is the lattice spacing. Combining ( 1 3 )  and ( 1 4 )  yields 

E = PI  cosh cp p = p l  sinh cp ( 1 5 )  

where 

E = - 1  
P 

P ( n + 1 ) / 2  =- 2 

0-0 
p = lim exp 

That is, 4 is the physical rapidity and pf the physical masses of the particles. The limit 
a + 0, io + CD is taken, as is usual in the light-cone approach, such that ,U is a finite-mass 
scale. 

( 1 7 )  
cp = e h v / 2 [ ( n  + l ) ( ~  - y ) +  E T ] .  

-i8rr ( 2 [ ( n  + I ) ( T  - y ) +  E T ]  
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The mass spectrum (16) is characteristic of the Aiz) algebras. The Ai:) exhibits the 
same mass spectrum as the Toda QFT whereas our spectrum gives the one of 
the Toda QFT only y+O [8]. 

The S-matrix between a hole at branch 1 and another one at I '  follow from (10) 
applying the method of [ 9 ] .  (That is the S-matrix between a particle mi and a particle 
mi,.) It reads SII,( 4 )  = e ~ p [ i & ~ , (  4)] where + is the relativistic rapidity and 

~ [ z [ ( n + l ) ( ~ - Y ) + E a l l a l  

& l , ( c p )  = 257 I, a , i , ( A )  dA. (18) 

Looking at (10) and (18) shows that this S-matrix is not an elementary function 
of 4 whereas only hyperbolic functions appear in the Toda field theories for simply 
laced algebras [8, 101. 

Besides this scaling limit yielding an integrable massive QFT, we can take the trivial 
continuous limit (a  + 0) leading to the conformal invariant model. 

Let us sketch the derivation of the finite-size corrections and give the results. The 
finite-size corrections to the free energy can be expressed in a form analogous to the 
A'," model [7]. 

& ( e )  = f N ( e )  - f O , ( O )  

+higher orders (19) 
where *A? are the largest positive and negative roots of the BAE (1) in the lth branch 

and 

-$(A y/2)])]}. 

We define the Fourier transforms 
tm 

xT(o) = eiW'dt  O(*t)a!,!?(A:+t) 
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which are analytic functions of w for *lm w > 0. We get a matrix Riemann-Hilbert 
problem from the BAE ( l ) ,  ( 2 )  approximated as (19) 

( n - s ) / 2  ~ 

im(AT-A:) c Rkl(@)x:(w) e 
f = I  

where RIf . (w)  = &.- c l l , ( w ) .  The resolution of this problem is analogous to 171. The 
new thing is that for the twisted case considered here, it is convenient to introduce a 
quantity 

In this way the weights of a Bethe ansatz state can be written as 

where M stands for the extended Cartan matrix 

Notice that this matrix appears in the R - ' ( w )  matrix 

M - 2 c o s h w ( n - y )  
2 

R - ' ( w )  = 
sinh w ~ / 2  

Let us now obtain the finite-size corrections L N  (e)  for an excited state with weights 
SI (1 G I S  n) and h: holes beyond *A:. That is a generic low-energy excitation (cf (13)).  

Proceeding as in [7] we find 

7~ (n--E) 2ni  
L N (  e )  = -- - sin(KB)-7[Ae-iKe-& eiKe] 

N2 12 N 

where 

n 
K =  

2[(n + l ) ( n  - y )  + e n ]  

follows from A by exchanging h i  t) h k. Since the speed of sound here is U = sin( KO) 
(see (13)), (28) tells us that the central charge is c = (n - ~ ) / 2 .  We recall that the 
parameter K gives the finite renormalization of the rapidity (cf (17)) .  It is usually 
connected with the one-loop /3 function in the associated QFT [4]. 

indicate that the conformal behaviour is like a (n  - ~ ) / 2  
component Coulomb gas. For the Ai2' model we find c = 1 and the usual Coulomb gas. 

The results for c, A and 
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An integrable magnetic chain follows from the AE) vertex model as usual from the 
logarithmic derivative of the transfer matrix at 0 = 0. Therefore, the eigenvalues of this 
family of Hamiltonians can be trivially obtained from our results as 

a 
E = -sin y- log A( O) le=o  

a0 (30) 

where A(0)  is given by (3), ( l l ) ,  (13), (19) and (28). 
Let us briefly discuss the n = 2 case where the 'spin' at each site has three com- 

ponents. Therefore we can write the Hamiltonian in terms of spin-one operators 
(S",  Sy ,  S z )  as follows 

HI = - ; { cTj +f ( y ) [(cos y - 1) U; - 2( 1 + 2 cos y ) (sy 
j = 1  

+ q s ;  - Sj,,) + 2( 1 +cos y/2) + 1 ) ( u j ) 2  ( cos y -1  

- 2  cos-+l  (U;)*+ 3cosy-2cos- - l  (U;)* ( 2 y )  ( 2 y ,  31 
where 

cos y -1  
f ( y ) = 2 c o s  7 - 1  

(32) 
U; = s;, , s; c sp,,sp U; = U] -a;. 

a=x ,v , z  

This is a new spin-one integrable Hamiltonian. The ground-state energy follows 
from (1 1) and (30) for n = 2 

E ( y ) = jom dx sinh x 1 
Y sinh.rrx/y 2 c o s h x / y ( ~ - y ) - l '  

The excitation energies follow from (13) and (30) for n = 2 

477 s i n h ( 4 ~ p / 3 (  T - y))  
8 ( ~ - y )  s i n h ( 2 ~ p / ( ~ -  y)) 443 Y) = 

which yields the dispersion relation: 
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